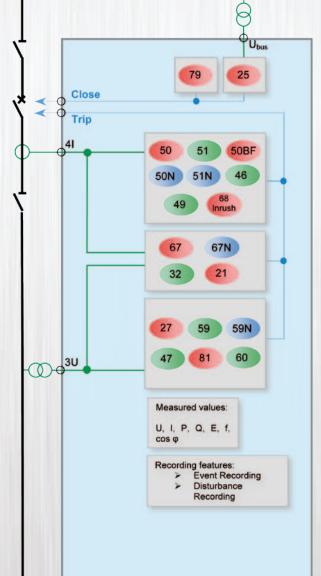
DTIVA

EUROPROT+

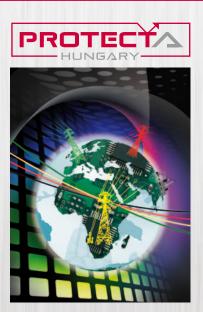
Use DTIVA products in full range of MV feeder protection and control applications for cables, overhead lines, motors, distributed generators and capacitor banks. Directional and non-directional overcurrent, voltage, frequency, MV distance, line differential, motor protection and vector jump protection functions.

Native IEC 61850 compatibility



COLOR TFT TOUCHSCREEN QVGA (320 x 240) 65536 color 3.5'' (optionally 5.7'') TFT display

- Complete MV bay units including full protection and controlling functions
- User friendly LCD configuration with a library of a large number of predefined controllable objects
- Enhanced interlocking schemes
- Distribution load shedding schemes
- Protection against islanding operation for wind farm and photovoltaic energy applications


- Use your web browser for complete device handling
- High capacity heavy duty trip contacts: 4A 220V DC breaking capacity
- Enhanced breaker monitoring
- Built-in PLC for user logic
- Full bay control feature

ECTION, AUTOMATION & CONTROU

DTIVA – CONFIGURATIONS

Configur	ations	EL	E2	E3	E4	E5	E6	E7		E8	E9	E10
IEC	ANSI											
1>>>	50	×	×		×	×			×			-
15,155	51	×	×		x	×			×			×
I Dir>>,	67	1	^	1.1	1.000	1			-			
I Dir >>					×							
10 >>>	50N	×	×			×						
10 >, 10 >>	51N	×	х	× 1	×	×			×			ĸ
lo Dir >>, lo Dir >>	67N	L	×	1	. *							
3l _d L >	87L					×						
	87G								×			
Z<	21				*							
12.>	68	×	×			*						
h>	46	×	×			×			*			
T>	49	1.0	1.0	1.2	10	1.2			*			
	and a	1.1	^		1.0	•	1000					
U>, U>>	59		×			*			*			Op.
U<,U<<	27		×		×	×			×	×		0.
Uo >, Uo >>	59N		×		×	×			×	. *		Gp.
U2>	47		×					. *	×			
U1 <	27D								×			
f>, f>>	810				x				×	x		
14,144	81U				×					×		
f/dt	81R				x				×			
	2020191											
SYNC	25					-						
0->1	79			1.1								
0-31	60	1.1	1	1	1.0	1.	1					
	1000				1		1.00		-			
	60	×	×		1.				*			
CBFP	SOBF	×.	×		×	×			*			
31 ₀ B >	48								×			
31 ₆ B >	37								*			
	66								*			
P>	32		x	1	×							
Pe	32		×		×							
	32	-1 CT # m	idule)	- 1		-	1					
parameters		ingle Ch - D				0.50		drg A		1	-	
or the data		right Ch - 11				145		deg		X	5	-
avanta		ingle Ch - El				0.50 21		A deg	+	ttt	Y I	
dar furth arrent	recurder o	invest Ch - M	14			11.00 J		A deg			E/	
network pro	te e The e Marcell								-		1	•
doc-search a b												
advanced.		-] wra m										
*=		ullage Ch						v dra		~	+	
	v	ultage Ch -	10			58.81		*		X	T	
		ngin Ch - Li altaga Ch -				-121 58.99		deg V		112	5	111
	- 2	-pla Ch - U				120		deg		110	RA	111
		oltage Ch - Ingle Ch - D	-			1.04		v drg		V	-	
	4	A. 64. 6										

Version	Recommended application
EI	Protection of overhead lines and cables on radial net- works. The configured functions are based on current measurement and they are supplemented with automatic reclosing function.
E2	This configuration is the functional extension of version DTIVA EI. The additional voltage measurement is the ba- sis of the residual directional decision, power calculation and over- and undervoltage functions.
E3	The configuration is designed to meet the requirements of a complex field unit for overhead lines and cables on compensated or resistance grounded networks. The range of functions includes all current and voltage based appli- cations, except distance protection and line differential functions. The automatic reclosing function is performed with synchrocheck. Frequency protection functions are included.
E4	This configuration is the functional extension of version DTIVA E3. The range of functions includes all current and voltage based applications, including the distance protec- tion function. The only exception is the line differential function.
E5	This configuration is another functional extension of ver- sion DTIVA E3. The range of functions includes all current and voltage based applications except for the distance pro- tection function. The configuration is supplemented with the line differential protection function.
E6	This configuration is a functional extension of version DTI- VA E3. The range of functions includes all current and volt- age based applications, including the distance protection function and line differential protection function.
E7	The configuration is designed to meet the requirements of a complex motor protection device for medium volt- age motors.
E8	The configuration is designed to measure voltages. Over- and undervoltage functions are performed based on these measurements. The configuration is supplemented with frequency protection functions.
E9	The configuration is designed to be applied on networks with distributed generation. Its unique function is vector jump protection. Additionally to voltage-based functions, current-base functions are also available, and the measure- ments support the application of calculated power-based functions.
E10	This simple configuration is designed to protect power capacitor units based on current unbalance measurement.

www.protecta.hu, protecta@protecta.hu